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Abstract
From a wide class of translationally invariant discrete nonlinear Schrödinger
(DNLS) equations, we extract a two-parameter subclass corresponding to
Kerr nonlinearity for which any stationary solution can be derived recurrently
from a quadratic equation. This subclass, which incorporates the integrable
(Ablowitz–Ladik) lattice as a special case, admits exact stationary solutions that
are derived in terms of the Jacobi elliptic functions. Exact moving solutions for
the discrete equations are also obtained. In the continuum limit, the constructed
stationary solutions reduce to the exact moving solutions to the continuum NLS
equation with Kerr nonlinearity. Numerical results are also presented for the
special case of localized solutions, including sech (pulse, or bright soliton),
tanh (kink, or dark soliton) and 1/tanh (called here inverted kink) profiles.
For these solutions, we discuss their linearization spectra and their mobility.
Particularly, we demonstrate that discrete dark solitons are dynamically stable
for a wide range of lattice spacings, contrary to what is the case for their
standard DNLS counterparts. Furthermore, the bright and dark solitons in the
non-integrable, translationally invariant lattices can propagate at slow speed
without any noticeable radiation.

PACS numbers: 03.40.Kf, 63.20.Pw

Dedicated to the memory of collaborator and friend Shozo Takeno

1. Introduction

In continuum nonlinear equations without external spatially dependent potentials, the existing
solitary wave solutions are invariant with respect to a shift along the spatial coordinate due to
the so-called translational invariance. In lattice equations translational invariance is usually

1751-8113/07/081727+20$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1727

http://dx.doi.org/10.1088/1751-8113/40/8/003
http://stacks.iop.org/JPhysA/40/1727


1728 S V Dmitriev et al

lost and the static/stationary solutions exist only for a discrete set of positions with respect to
the lattice. Generally speaking, discreteness also limits the mobility of localized structures,
but this is not always the case. For instance, there exist (a few) integrable lattices where
the coherent structures can be placed anywhere with respect to the lattice and can propagate
without any energy loss [1–3].

On the other hand, a class of non-integrable, translationally invariant (TI) Klein–Gordon
lattices was recently developed. Relevant theoretical studies first appeared in the pioneering
works [4–6], and then generalized on the basis of the discretized first integral (DFI) approach
in [7, 8] (see also the concurrent works of [9, 10] for a slightly different perspective). Other
contributions to this problem [11–14] are devoted to additional related models and their
properties, such as collisions of the solitary waves. On the other hand, looking for the
stationary, standing wave solutions of the continuum nonlinear Schrödinger (NLS) equation
with general nonlinearity reduces the problem to the corresponding continuum Klein–Gordon
equation. Thus, the DFI method of constructing the TI discretizations developed for the
Klein–Gordon equation can be immediately applied to the NLS one [15, 16].

The TI discretizations are important from both a mathematical and a physical standpoint
since they provide discrete models whose coherent structures are not ‘trapped’ by the lattice,
even in the highly discrete regime. For typical discretizations, given that solutions can be found
only for a discrete set of positions with respect to the lattice (typically on a lattice site and at the
middle between two adjacent lattice sites), a potential barrier (the so-called Peierls–Nabarro
barrier) needs to be overcome in order to observe wave propagation over the lattice. However,
for TI discretizations, since such a barrier is absent, it is easier for waves to propagate without
radiation losses or to be accelerated by even weak external fields. In that respect, the TI
models emulate more closely their continuum siblings rather than their non-TI counterparts.
Furthermore, occasionally, they may constitute the proper physical model in their own right
[12]. For these and related reasons, the TI discrete nonlinear Schrödinger (DNLS) equations
have been recently receiving considerable attention [15–19]. A review and classification of
various TI DNLS models can be found in the very recent work of [19]. Some of the DNLS
models with cubic (Kerr) nonlinearity support exact stationary solutions that can be expressed
in terms of the Jacobi elliptic functions [17, 18]. Similar solutions have been reported for
the φ4 TI lattices [8, 11], and it was demonstrated that the full set of the stationary solutions
can be derived from the corresponding DFI [8]. The Jacobi elliptic function solutions were
found for the models whose DFI is a quadratic algebraic equation. Although this technique
cannot be used for DFIs of arbitrary order, it is still worthwhile to obtain such solutions due to
the physical relevance of the underlying cubic nonlinear models. An alternative but equally
compelling motivation is that these belong to a special group, consisting of very few nonlinear
models (especially non-integrable ones), where the families of stationary solutions can be
obtained in closed form.

For the above reasons, in the present study, from a wide class of the TI DNLS models
with Kerr nonlinearity constructed in [15, 16], we extract a two-parameter subclass whose
DFI is a quadratic algebraic equation. Then, we present a set of stationary Jacobi elliptic
function solutions to this DNLS model and, following the approach presented in [8], we also
demonstrate how to derive all possible stationary solutions iteratively from the DFI. Examples
of the exact lattice solutions moving with a selected velocity are also given. In the continuum
limit, the constructed Jacobi elliptic function solutions transform to the full set of moving
solutions of the continuum NLS model with focusing and defocusing Kerr nonlinearities,
including possible unbounded ones.

Our presentation is structured as follows. In section 2, we present the general setup of
the continuum NLS equation with Kerr nonlinearity and its two-parameter discrete, TI model.
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Conservation laws supported by different subclasses of the considered model are discussed
in section 3. Exact stationary solutions for the lattice equations are given in section 4 and
the exact moving solutions in section 5. A numerical study of the stability and other related
properties for the selected group of hyperbolic function solutions is carried out in section 6.
The full set of the exact moving solutions of the continuum NLSE with Kerr nonlinearity is
obtained in section 7. Finally, in section 8, we briefly summarize our findings and present our
conclusions.

2. Setup

We start our study considering the NLS equation with Kerr nonlinearity, expressed in the
following dimensionless form:

iψt + 1
2ψxx + λ|ψ |2ψ = 0, (1)

where the parameter λ = ±1 (the cases λ = +1 or λ = −1 correspond to a focusing or a
defocusing nonlinearity, respectively).

Seeking stationary solutions of equation (1) in the form

ψ(x, t) = f (x) eiωt , (2)

we reduce the NLS equation to an ordinary differential equation (ODE) for the real function
f (x),

D(x) ≡ f ′′ − 2ωf + 2λf 3 = 0. (3)

The latter ODE has the form of an equation of motion of a one-dimensional dynamical system,
which possesses the first integral

u(x) ≡ (f ′)2 − 2ωf 2 + λf 4 + C = 0, (4)

where C is the integration constant, representing the total energy of the above dynamical
system.

We introduce the lattice xn = nh, where h is the lattice spacing and n = 0,±1,±2, . . . .

For convenience, we also introduce the following shorthand notations:

f (xn−1) = f−, f (xn) = fn, f (xn+1) = f+, (5)

and will focus only on discretizations that involve such nearest neighbour sites.
We then involve the following two-point discretization of the first integral equation (4),

u(f−, fn) ≡ 1

h2
(fn − f−)2 − 2ωf−fn + λf 2

−f 2
n + C = 0. (6)

In principle, it is possible to construct a more general discretization of equation (4) involving
also terms cubic and quartic in fn [15, 16]. However, here we retain only quadratic terms,
which, as we will show below, allows for a straightforward determination of the solutions in
terms of the Jacobi elliptic functions.

Discretizing the left-hand side of the identity (1/2) du/df = D(x), we obtain the discrete
version of equation (3),

D(f−, fn, f+) ≡ u(fn, f+) − u(f−, fn)

f+ − f−

= f− − 2fn + f+

2h2
− ωfn +

λ

2
(f− + f+)f

2
n = 0. (7)

Formally, D(f−, fn, f+) = 0 is a three-point problem but, clearly, its solutions can be
found from the two-point problem u(f−, fn) = 0, equation (6), which is a quadratic algebraic
equation.
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The TI discretization of equation (1) reads

iψ̇n +
1

2h2
(ψ− − 2ψn + ψ+) +

λ

2
S(ψ−, ψn, ψ+) = 0, (8)

where the overdot denotes time derivative, and S(ψ−, ψn, ψ+) is any function that, upon
substituting

ψn(t) = fn eiωt , (9)

reduces to (f− + f+)f
2
n eiωt . For example, the following two-parameter DNLS equation can

be offered:

iψ̇n +
1

2h2
(ψ− − 2ψn + ψ+) +

λ

2

{
δ1ψn(|ψ−ψn| + |ψnψ+|)

+ δ2(ψ− + ψ+)|ψn|2 + δ3(ψ
�
− + ψ�

+)ψ2
n

} = 0, (10)

with the coefficients satisfying the continuity constraint,

δ1 + δ2 + δ3 = 1. (11)

We note in passing that the δ1 term of equation (10) was not discussed in the work [19] where
a ten-parameter DNLS model was investigated.

Stationary solutions to equation (10) of the form of equation (9) can be found from the
two-point nonlinear map equation (6), which we rewrite in the form of

(fn − f−)2 + 2(1 − �)f−fn + �f 2
−f 2

n + S = 0, (12)

where

� = 1 + ωh2, � = λh2, S = Ch2. (13)

3. Conservation laws

The two-parameter TI DNLS model of equation (10) contains subclasses conserving the
classical norm

N =
∑

n

|ψn|2, (14)

the modified norm

Ñ = 1

2

∞∑
n=−∞

(ψnψ
�
+ + ψ�

nψ+), (15)

and the classical momentum

P = i
∞∑

n=−∞
(ψnψ

�
+ − ψ�

nψ+). (16)

The above-conserved quantities are illustrated in figure 1 on the (δ1, δ2) plane.
To demonstrate that these quantities are indeed conserved, we first calculate the time

derivatives dN/dt, dÑ/dt , and dP/dt , and then substitute in these expressions iψ̇n using
equation (10). This way, we come to the following results:

dN

dt
= λ(δ2 − δ3)

∑
n

|ψn|2[In(R− + R+) − Rn(I− + I+)], (17)
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Figure 1. Conserved quantities for the TI DNLS model of equation (10) shown on the (δ1, δ2)

plane. The norm N is conserved on the dashed line δ2 = (1 − δ1)/2. The modified norm Ñ is
conserved at the point (δ1, δ2) = (0, 1), which corresponds to the integrable discretization. The
momentum P is conserved on the solid line δ1 = 0. Apparently, there is no choice leading to
a model that conserves all three quantities simultaneously. Note that N and P are conserved at
(δ1, δ2) = (0, 1/2), while Ñ and P are conserved at (δ1, δ2) = (0, 1).

dÑ

dt
= λ

2

∑
n

(RnI+ − R+In)[δ1|ψ−ψn| + 2δ3(R−Rn + I−In)]

+
λ

2

∑
n

(RnI− − R−In)[δ1|ψnψ+| + 2δ3(RnR+ + InI+)], (18)

dP

dt
= λδ1

∑
n

|ψn|(|ψ−| + |ψ+|)[Rn(R− − R+) + In(I− − I+)], (19)

where we have used the notation

Rn = Re(ψn), In = Im(ψn). (20)

From equation (17) it is clear that the norm N is conserved (dN/dt = 0) for arbitrary δ1

and δ2 = δ3, which, with the use of the continuity constraint of equation (11), corresponds to
the dashed line δ2 = (1 − δ1)/2 in the (δ1, δ2)-plane shown in figure 1.

On the other hand, from equation (18) we deduce that the modified norm Ñ is conserved
for arbitrary δ2 and δ1 = δ3 = 0, i.e., at the point (δ1, δ2) = (0, 1) in figure 1.

Finally, from equation (19) we find that the momentum P is conserved for arbitrary δ2

and δ3 and for δ1 = 0, shown by the solid line δ1 = 0 in figure 1.
Thus, the TI DNLS model of equation (10) does not possess all three conserved quantities

simultaneously. On the other hand, it should be mentioned that N and P are simultaneously
conserved at the point (δ1, δ2) = (0, 1/2), while Ñ and P are simultaneously conserved at the
point (δ1, δ2) = (0, 1), which corresponds to the integrable discretization.

4. Exact stationary solutions

In this section we describe all possible exact stationary solutions to the TI DNLS model of
equation (10).

4.1. Solutions from nonlinear map

To find all stationary solutions to the TI model of equation (10) having the form of equation (9)
we solve equation (12) and find the amplitudes:
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Figure 2. Admissible region for the initial value of f0 in the nonlinear map equation (21) for
different S at � = 1, � = 2. Roots F1 and F2 merge at S = (� − 1)2/�, and roots F2 and F4
merge at S = 0. The dn solution, equation (31), is defined for 0 < S < (� − 1)2/�. The cn
solution, equation (30), is defined for S < 0, and this region is divided into two parts, β1 and β2,
each corresponding to a particular root of the first equation in equation (30). The border between
these two regions is shown by the dotted line situated (for the chosen parameters) at S ≈ −3.00.

fn(f−) = �f− ± √
D

1 + �f 2−
, (21)

with

D = �2f 2
− − (1 + �f 2

−)(S + f 2
−), (22)

where fn and f− can be interchanged due to the symmetry of equation (12). The solution is
obtained by iterating equation (21) and its counterpart written as f−(fn), starting from any
admissible initial value f0. Arbitrariness in the choice of the initial condition implies the
translational invariance of these models.

As can be seen from equation (21), for fixed �, � and S, there are certain constraints on the
initial value f0. In particular, there exist inadmissible initial values for which the denominator
becomes zero, i.e., f0 �= ±√−1/� for � < 0, and also ones for which D < 0. The condition
D = 0 is a biquadratic algebraic equation providing the borders of the admissible region and
has the roots

(
f 2

0

)
1,2 = �2 − 1 − S� ±

√
(�2 − 1 − S�)2 − 4S�

2�
. (23)

We introduce the following notations for these roots:

F1 = −F3 =
√(

f 2
0

)
1, F2 = −F4 =

√(
f 2

0

)
2. (24)

The admissible regions are plotted in figures 2 and 3 for � = 1 and � = −1, respectively.
The inadmissible regions are marked with ‘no’.

Since equation (21) serves for calculating both back and forth points of the map, once
started from an admissible value of f0, one cannot leave the admissible region iterating
equation (21), so that the stationary solution will necessarily be constructed for the entire
chain.

In the limit of h → ∞, equation (21) is reduced to the following form:

fn = ω ± √
ω2 − λC

λf−
, (25)

with inadmissible initial value of f0 = 0 and λC < ω2.
Solutions in the continuum limit (h → 0) will be presented in section 7.
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Figure 3. Same as in figure 2 but for � = −1, � = 0.3. There are two inadmissible lines,
f0 �= ±√−1/� (horizontal dashed lines), and the three inadmissible regions marked with ‘no’.
Roots F1 and F2 merge at S = (1 ± �)2/�, and roots F2 and F4 merge at S = 0. The 1/cn
solution, equation (33), is defined for S > 0. The sn solution, equation (29), and the 1/sn
solution, equation (32), are defined for (1 − �)2/� < S < 0. The region of the sndn/cn solution,
equation (34), is (1 + �)2/� < S < (1 − �)2/� and it is divided into two parts corresponding
to the roots β1 and β2 of the first expression in equation (34); this border is shown by the dotted
line situated, for the chosen parameters, at S ≈ −0.91. We could not find a solution of the form of
equation (26) in the region S < (1 + �)2/�, marked with the question mark (see discussion in the
text).

4.2. Jacobi elliptic function solutions

Stationary solutions to equation (10) having the form of equation (9) can also be expressed in
terms of the Jacobi elliptic functions (see, e.g. [17, 18]). The amplitude fn of these solutions
is given by the following general expression:

fn = ±A snq(Z,m) cnr (Z,m) dns(Z,m),

Z = βh(n + x0),
(26)

where 0 � m � 1 is the modulus of the Jacobi elliptic functions, A and β are the parameters
of the solution, x0 is the arbitrary initial position, and finally the integers q, r, s specify a
particular form of the solution.

In the limit of m = 1, equation (26) reduces to

fn = ±A tanhq(Z) cosh−r−s(Z), (27)

and, in the limit of m = 0, to

fn = ±A sinq(Z) cosr (Z). (28)

Essentially different, real amplitude solutions of the form of equation (26) are as follows.
For (q, r, s) = (1, 0, 0), we have the sn solution with the parameters

� = cn(βh) dn(βh), A =
√−m

�
sn(βh), S = 1

m
�A4. (29)

For (q, r, s) = (0, 1, 0), we have the cn solution with

� = cn(βh)

dn2(βh)
, A =

√
m

�

sn(βh)

dn(βh)
, S = m − 1

m
�A4. (30)

For (q, r, s) = (0, 0, 1), we have the dn solution with

� = dn(βh)

cn2(βh)
, A =

√
1

�

sn(βh)

cn(βh)
, S = (1 − m)�A4. (31)
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For (q, r, s) = (−1, 0, 0), we have the 1/sn solution with

� = cn(βh) dn(βh), A =
√

−1

�
sn(βh), S = m�A4. (32)

For (q, r, s) = (0,−1, 0), we have the 1/cn solution with

� = cn(βh)

dn2(βh)
, A =

√
m − 1

�

sn(βh)

dn(βh)
, S = m

m − 1
�A4. (33)

For (q, r, s) = (1,−1, 1), we have the sndn/cn solution with

� = mcn4(βh) + 1 − m

cn2(βh)
, A =

√
−1

�

sn(βh) dn(βh)

cn(βh)
, S = �A4. (34)

The solutions of equations (30) and (31) have real amplitudes for � > 0 while the others
for � < 0. For a given � one can find β by solving the first equation in equations (29)–(34),
and then A from the second one. Substituting these values into equation (26) we obtain the
amplitudes of the stationary solutions of the form of equation (9) that satisfies the discrete
NLSE equation (10).

The expressions for S in equations (29)–(34) link the Jacobi elliptic function solutions
and the solutions in the form of the nonlinear map of equation (21). As for the other free
parameter of the solutions equations (29)–(34), i.e., the arbitrary shift x0, its counterpart in the
nonlinear map, equation (21), is effectively the initial value f0.

We could not find a solution of the form of equation (26) in the region S < (1 + �)2/�,
marked with the question mark in figure 3. However, this region disappears in the continuum
limit (see section 7) and this might be the reason of failure (i.e., solutions may indeed not exist
in the considered form for that parametric interval).

5. Exact moving solutions to discrete NLSE

The discrete nonlinear lattice described by equation (10) also supports a number of moving
solutions. Here we present only the hyperbolic function solutions that generalize the stationary
solutions of equations (54)–(56); nevertheless, similar generalizations of the Jacobi elliptic
function solutions equations (29)–(34) can also be obtained.

The moving sech solution (bright soliton) is

ψn(t) = A sech[βh(n + x0 − vt)] ei(ωt+αn+φ0),

cos α = − δ1

2δ3
, v = sin α sinh(βh)

βh3
,

� = cos α cosh(βh), A = sinh(βh)√
�(δ2 − δ3)

.

(35)

The moving tanh solution (dark soliton) reads

ψn(t) = A tanh[βh(n + x0 − vt)] ei(ωt+αn+φ0),

cos α = − δ1

2δ3
, v = sin α tanh(βh)

βh3
,

� = cos α sech2(βh), A = tanh(βh)√
�(δ3 − δ2)

,

(36)

while the moving 1/tanh solution (inverted kink) is

ψn(t) = A ei(ωt+αn+φ0)

tanh[βh(n + x0 − vt)]
, (37)

and it has the same parameters as the solution of equation (36).
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The parameter α in the moving solutions is related to the propagation velocity v and it
depends on the model parameters δi . For fixed δi , the moving solution exists only for an
isolated propagation velocity. However, for δ1 = δ3 = 0, which is the case of the integrable
lattice, one can take arbitrary −π � α � π and hence, the velocity can change continuously.

Since |cos α| � 1, the moving solutions are defined not in the whole parameter plane
presented in figure 1, but only for |δ1/δ3| = |δ1/(1 − δ1 − δ2)| � 2.

We also note that the amplitude of the moving solutions diverges at δ2 = δ3 and one
has to set one more constraint on the parameters for existence of these solutions, namely
δ2 �= (1 − δ1)/2. On this line, the norm N is conserved and we thus conclude that the
norm-conserving subclass of equation (10) does not admit moving solutions.

6. Stability analysis

6.1. Numerical method

Let us now study the stability of the stationary solution equation (9). Following the
methodology of reference [20], we consider the following perturbed form of the solutions,

ψn(t) = [fn + εn(t)] eiωt , (38)

where the small complex perturbation εn(t) is expressed as follows:

εn(t) = a(t) + ib(t). (39)

Substituting equation (38) into equation (10) we find that εn(t) is governed by the following
linearized equation:

iε̇n − ωεn +
1

2h2
(ε− − 2εn + ε+) + δ1

λ

2

[
f 2

n (a− + a+) + fn(f− + f+)(an + εn)
]

+ δ2
λ

2

[
2fn(f− + f+)an + f 2

n (ε− + ε+)
]

+ δ3
λ

2

[
f 2

n (ε∗
− + ε∗

+) + 2fn(f− + f+)εn

] = 0. (40)

Then, separating real and imaginary parts of equation (40) we derive the following system:(
ḃ
ȧ

)
=

(
0 K
J 0

) (
b
a

)
, (41)

where vectors a and b contain an and bn, respectively, while the nonzero coefficients of
matrices K and J are given by

Kn,n = − �

h2
+ λfn(f− + f+), Kn,− = Kn,+ = 1

2h2
+

λ

2
f 2

n ,

Jn,n = �

h2
− λ

2
(δ1 + 2δ3)fn(f− + f+), Jn,− = Jn,+ = − 1

2h2
− λ

2
(δ2 − δ3)f

2
n .

(42)

In the above expressions, n = 1, . . . ,N , where N is the number of particles of the chain. For
symmetric solutions, periodic boundary conditions are imposed. For the localized hyperbolic
function solutions that shift the phase by π , e.g., for the tanh solution equation (55) and 1/tanh
solution equation (56), the anti-periodic boundary conditions were used. In this case, we
change the signs of the following elements K1,N = − 1

2h2 − λ
2 f 2

1 , KN ,1 = − 1
2h2 − λ

2 f 2
N , and,

similarly, J1,N = 1
2h2 + λ

2 (δ2 − δ3)f
2
1 , JN ,1 = 1

2h2 + λ
2 (δ2 − δ3)f

2
N . On the other hand, if, e.g.,

a kink–antikink pair is considered, then the total phase shift is zero and the normal periodic
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boundary conditions can again be used. A stationary solution is characterized as linearly stable
if and only if the eigenvalue problem(

0 K
J 0

) (
b
a

)
= γ

(
b
a

)
(43)

results in nonpositive real parts of all eigenvalues γ .
For the TI lattices discussed in the present study, the eigenvalue problem equation (43)

always gives rise to two pairs of zero γ , one pair corresponding to the invariance with respect
to translation, and another pair to the invariance with respect to the rotation/phase shift. These
eigenmodes are derived below.

6.2. Phase invariant and translationally invariant eigenvectors

Phase invariance of equation (10) means that arbitrary phase shift �φ can be applied to a
stationary solution of the form ψn = fn ei(ωt+�φ). For small �φ, the latter expression can be
approximated as

ψn = (fn + ifn�φ) eiωt , (44)

which should be compared to equation (38), revealing the generator of the group associated
with the invariance. The following eigen-pair

γ = 0,

(
b
a

)
= k

(
f
0

)
(45)

(with k being the normalizing factor) satisfies the eigenvalue problem equation (43). Indeed,
substituting equation (45) into equation (43) we obtain Jf = 0 or, in the explicit form Jn,−f− +
Jn,nfn + Jn,+f+ = 0. Utilizing equation (42), the last expression reduces to equation (7),
which is satisfied for the considered stationary solution. Thus, for the stationary solution
satisfying equation (7), the eigenvalue problem equation (43) is satisfied by the eigen-pair
equation (45).

Similarly, one can find the translationally invariant eigenvector. In the TI lattices, the
stationary solutions have the form ψn = fn[βh(n + x0)] eiωt with arbitrary shift x0. Let us
consider a small increment of the shift, �x0, and expand the solution taking into account only
the linear term. This way we obtain

ψn = (fn + βhf ′
n�x0) eiωt , (46)

where f ′
n denotes the derivative of fn with respect to its argument. Comparing this with

equation (38) one can see that the translational eigen-pair should be as follows:

γ = 0,

(
b
a

)
= k

(
0
f′

)
. (47)

To confirm that, we substitute equation (47) into equation (43) and obtain Kf′ = 0, or
Kn,−f ′

− + Kn,nf
′
n + Kn,+f

′
+ = 0. The last expression, with the use of equation (42), transforms

to
1

2h2
(f ′

− − 2f ′
n + f ′

+) − ωf ′
n +

λ

2
f 2

n (f ′
− + f ′

+) + λ(f− + f+)fnf
′
n = 0, (48)

which is proportional to the derivative of equation (7) with respect to x0. Since equation (7)
is identically satisfied for the considered stationary solution for arbitrary x0, it can be
differentiated yielding equation (48). Thus, for the stationary solutions satisfying equation (7),
the eigenvalue problem equation (43) is satisfied by the translationally invariant eigen-pair
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equation (47). Note that derivation of equation (7) with respect to x0 is meaningful only for
the TI models.

One can boost a stationary solution along the translationally invariant mode. We first
note that while the eigenvalue problem Kf′ = 0 has a single root γ = 0, the extended
problem equation (43) has γ 2 = 0 corresponding to a pair of the eigenvalues associated with
translational invariance. Then, we write the following solution to the real and imaginary parts
of equation (40), employing the eigenvector equation (47),(

bn(t)

an(t)

)
= v

(
0

(1 + t)f′

)
. (49)

Substituting equation (49) into equation (38) we obtain an approximate moving solution to the
nonlinear equation (10), whose accuracy increases with decrease in the eigenmode amplitude
v, which is proportional (for small v) to the propagation velocity.

6.3. Stability of the plane-wave solution

We consider the simplest plane-wave solution of the form

ψn(t) = ±A eiωt , A =
√

ω

λ
=

√
1 − �

h
, (50)

where the real amplitude A is found upon substituting the solution into equation (10). We are
interested in the (modulational) stability of this solution for the following reasons: First, this
solution is in fact the dn solution equation (31) in the limit m → 1. Second, the above plane-
wave solution is in fact the background of the tanh, equation (55), and 1/tanh, equation (56),
solutions (see the asymptotic limits of equations (55) and (56) for |n| → ∞). Naturally,
the latter two solutions cannot be stable if their ‘pedestal’, i.e., the plane-wave solution of
equation (50), is modulationally unstable.

Setting fn = A in equation (42) we then present equation (41) as a system of second-order
linear differential equations ä = JKa. Seeking for small-amplitude wave solutions of the form
an(t) ∼ exp(iQhn − i�t), characterized by a frequency � and a wavenumber Q, we derive
the following dispersion relation:

�2(Q) = 4

[
− 1

h2
+ λ(1 − δ1 − 2δ2)A

2

] [
λA2 −

(
1

h2
+ λA2

)
sin2

(
Qh

2

)]
sin2

(
Qh

2

)
. (51)

Each positive (negative) �2 gives two purely imaginary (real) eigenvalues of the original
problem equation (43), γi = ±i

√
�2 (γr = ±√−�2).

The solution equation (50) is modulationally stable for wavenumbers Q such that
�2(Q) > 0.

For λ = 1, equation (51) always has regions of Q with negative �2, which indicates the
instability of the plane-wave solution of equation (50).

For λ = −1 the stability condition is
1

h2
+ (1 − δ1 − 2δ2)A

2 � 0. (52)

This condition can be satisfied at any point of the model parameter space (δ1, δ2) shown in
figure 1, if the amplitude A or/and the lattice spacing h are sufficiently small. On the other
hand, in the region of the parameter space with δ1 + 2δ2 � 1, the stability condition is satisfied
for any A and h.

Setting A = 0 in equation (51) we obtain the spectrum of the vacuum (ψn = 0),

�2 = 4

h4
sin4

(
Qh

2

)
, (53)

which is always stable.
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Figure 4. Space-time evolution of |ψn(t)|2 showing slow motion of the pulse, equation (54), in
the non-integrable, TI lattice. The moving highly localized pulse does not produce any noticeable
radiation. Parameters: λ = 1, δ1 = δ2 = δ3 = 1/3, h = 2,� = 3, ω = 0.5.

To conclude, the plane-wave solution equation (50) with A > 0 is stable for λ = −1 if
equation (52) is satisfied. The solution is stable with respect to small-amplitude sinusoidal
waves with any wavenumber Q. For λ = 1 and A > 0, there are always unstable modes with
Q > 0. The vacuum solution (A = 0) is stable.

6.4. Pulse solution (bright soliton)

The cn and dn solutions (λ = 1) described in section 4.2, in the limit of m → 1, reduce to the
pulse solution

fn = ±A sech[βh(n + x0)],

� = cosh(βh), A =
√

�2 − 1

h
, S = 0.

(54)

For the stationary pulse in a chain of N = 200 sites we calculate the spectrum of small-
amplitude vibrations solving numerically the eigenvalue problem equation (43). The pulse
solution was found to be stable in a wide range of the model parameters δi , the discreteness
parameter h, and the pulse frequency ω.

As an example, figure 4 illustrates a highly localized pulse propagating at slow speed of
v = 0.017 in the non-integrable, TI lattice with δ1 = δ2 = δ3 = 1/3. The lattice spacing is
h = 2 and the pulse frequency is ω = 0.5. The moving pulse does not produce any noticeable
radiation. A zero-frequency normalized translational mode with a small amplitude was used
to boost the pulse, as described in section 6.2. According to equations (47) and (54), the
translational eigenmode is bn = 0, an ∼ f ′

n ∼ sech[βh(n + x0)] tanh[βh(n + x0)].
For the considered parameters, we did not observe in the spectrum of the stationary pulse

any localized modes except for the four zero-frequency modes. The rest of eigenvalues appear
in the phonon band ranging from ω to ω + �max with �max = 2/h2 (see equation (53) for
Q = π/h).

6.5. Kink solution (dark soliton)

In the limit of m → 1, the sn solution (λ = −1) described in section 4.2 reduces to the kink
solution
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Figure 5. Kink (dark soliton) profiles for x0 = 0, 0.35 and 0.5 at λ = −1, h = 1,� = 0.01,

ω = −0.99. Stationary kink profiles do not depend on the parameters δi . The degree of kink
localization increases as positive � approaches zero.

fn = ±A tanh[βh(n + x0)],

� = sech2(βh), A =
√

1 − �

h
, S = −h2A4.

(55)

In standard DNLS models dark solitons typically survive the anti-continuum limit
(h → ∞) [21, 22], but in the present model they do not. Indeed, the iterative formula
equation (25), for λ = −1 and S = −h2A4 = −h2ω2, reduces to fn = −ω/f− with the
zigzag solution f2n = f0, f2n+1 = −ω/f0, which is not a dark soliton. This qualitative
difference is due to the fact that, in the models discussed here, coupling between nearest
neighbours takes place also in the anharmonic term and it remains in the system even if the
harmonic coupling terms are neglected.

On the other hand, highly localized dark solitons can be observed in the discussed DNLS
models at finite h when the inverse kink width βh is very large, which happens for small
positive � (see the first expression in the second line of equation (55)).

Robust dark solitons were found on the line δ1 = 0 (see figure 1). These structures will
be discussed in this case and in the highly localized regimes, � = 0.1 and 0.01. For the lattice
spacing we set h = 1.

For these parameters we find from equation (52) that the plane-wave structure carrying
the kink solution becomes unstable for δ2 > (1 − �/2)/(1 − �). Taking � = 0.01 we find
δ2 > 1.005, i.e., the highly localized kink becomes unstable slightly above the integrable case
(δ2 = 1).

The equilibrium kink profile does not depend on δi ; examples of kinks for several values
of x0 and � = 0.01 are shown in figure 5 to demonstrate that, for chosen parameters, the kink
is highly localized.

For the kink in a chain of N = 200 sites we calculate the spectrum of small-amplitude
vibrations solving numerically the eigenvalue problem equation (43). As an example, in
figure 6 we show the spectrum of the on-site kink (x0 = 0) shown in figure 5 for δ1 = 0 and
different values of δ2 decreasing from (a)–(d) as indicated in each panel. As noted above,
the plane wave carrying the kink is unstable for δ2 > 1.005, as can be seen in (a). The kink
is stable for δ2 < 1.005 (see in (b)–(d)). For 1.0 < δ2 < 1.005 the stable kink possesses
a localized vibrational mode which enters the phonon band at δ2 = 1, corresponding to
the integrable case. The phonon band of the kink is given by equation (51) and it has
�max = (2/h2)

√
1 + (1 − δ1 − 2δ2)(1 − �). The spectrum of the inter-site kink is similar.

The robustness of the moving kinks is demonstrated in figure 7 by simulating their
collision. Here we take � = 0.1, while other parameters are unchanged. One can see
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(a) (b)

(c) (d)

Figure 6. Spectrum of the on-site kink (x0 = 0) shown in figure 5 for δ1 = 0 and different values
of δ2 decreasing from (a) to (d) as indicated in each panel. The plane wave carrying the kink is
unstable for δ2 > 1.005, as can be seen in (a). The kink is stable for δ2 < 1.005 (see (b) to (d)).
For 1.0 < δ2 < 1.005 the stable kink possesses a localized vibrational mode which enters the
phonon band at δ2 = 1, corresponding to the integrable case. The spectrum of the inter-site kink
is similar. We found also that kinks in the TI model presented here can be stable in the weakly
localized regime, which contrasts to the behaviour of kinks in the generic discrete models [21, 22].

Figure 7. Space-time evolution of |ψn(t)|2 showing practically elastic collision of two highly
localized, slowly moving dark solitons (kinks) in the non-integrable TI lattice. Parameters: λ = −1,
h = 1, δ1 = 0, δ2 = δ3 = 0.5,� = 0.1, ω = −0.9.

that the collision of highly localized kinks is practically elastic and without any noticeable
radiation. To boost the kinks we used the translational eigenmode with a small amplitude, as
described in section 6.2. As follows from equations (47) and (55), the translational eigenmode
is bn = 0, an ∼ f ′

n ∼ sech2[βh(n + x0)].
In the classical DNLS equation, only highly localized on-site dark solitons close to the

anti-continuum limit are stable, while inter-site ones are unstable at any degree of discreteness
[21, 22]. In the TI model discussed here we found that they can be stable also in a weakly
localized regime and at any position with respect to the lattice. The principal reason is
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Figure 8. Inter-site inverted kink profile in the highly localized regime. Parameters: λ = −1,

h = 1,� = 0.01, ω = −0.99, x0 = 0.5. Profile of the stationary inverted kink does not depend
on the parameters δi .

that the instability is driven by the bifurcation of the eigenvalues associated with translation.
In the present class of models, since TI is restored and the relevant eigenvalue is at the origin of
the spectral plane, the (oscillatory) instabilities of discrete dark solitons are no longer present.
This is one of the critical differences between TI and generic discrete models in this context.

6.6. Inverted kink solution

In the limit of m → 1, the 1/sn solution (λ = −1) presented in section 4.2 reduces to the
inverted kink solution

fn = ±A

tanh[βh(n + x0)]
, (56)

with the parameters �, A and S being the same as for the tanh solution, equation (55).
To obtain a highly localized inverted kink we take the following parameters, λ = −1, h =

1,� = 0.01, ω = −0.99 (same as we took for the kink).
The inter-site inverted kink is shown in figure 8 and its profile does not depend on δi .
For the stationary inverted kink in a chain of N = 200 sites we calculate the spectrum

of small-amplitude vibrations solving numerically the eigenvalue problem equation (43) and
show several results in figure 9 for δ1 = 0 and different values of the parameter δ2.

For the chosen parameters, the inter-site inverted kink (x0 = 0.5) was found to be stable
on the line δ1 = 0 within the range of 0.897 < δ2 < 1.0045, while the asymmetric inverted
kink at x0 = 0.4 within a somewhat narrower range of 0.915 < δ2 < 1.0043. These intervals
include the integrable lattice with δ2 = 1. As it was mentioned in the discussion of the kink, for
the chosen parameters, the plane-wave structure carrying the inverted kink becomes unstable
for δ2 > 1.005.

The spectrum of the inverted kink for δ2 � 1 consists of the phonon band, equation (51),
and the four zero eigenvalues. For δ2 > 1 a pair of purely imaginary eigenvalues lying outside
of the phonon band can be observed, as can be seen in figures 9(a) and (b). This is the sign of
the appearance of a vibrational mode localized around the inverted kink.

7. Exact moving solutions to the continuum NLS equation

In the continuum limit, h → 0, the borders of the admissible region, equation (23), become

(
f 2

0

)
1,2 = ω

λ
±

√(ω

λ

)2
− C

λ
. (57)
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(a) (b)

(c) (d )

Figure 9. Spectrum of the inter-site inverted kink (x0 = 0.5) shown in figure 8 for δ1 = 0
and different values of δ2 decreasing from (a) to (d) as indicated in each panel. The plane wave
carrying the inverted kink is unstable for δ2 > 1.005. The inverted kink is stable within the window
0.897 < δ2 < 1.0045 and panel (a) shows the spectrum slightly above, while panel (d) slightly
below the stability window. For comparison, panels (b) and (c) show the spectrum within the
stability window close to the upper and to the lower edges, respectively. For δ2 > 1 the inverted
kink possesses a localized vibrational mode (see in (a) and (b)), which enters the phonon band at
δ2 = 1, corresponding to the integrable case.

(a) (b)

Figure 10. Admissible regions for the continuum DNLS equation, equation (1), for (a) λ = +1
and (b) λ = −1 obtained as the continuum limits (h → 0) of those presented in figures 2 and 3,
respectively. In each panel there is one inadmissible region marked with ‘no’.

In figure 10 we plot the admissible regions for (a) λ = ω = 1 and (b) λ = ω = −1. The
topology of the admissible regions for the continuum NLS equation is simpler than the one
pertaining to the discrete models. In the continuum limit there exists a sole inadmissible region
for both cases λ = ±1, while three inadmissible regions exist for the discrete models in the
case � < 0. One more simplification is that the domains of the sndn/cn and cn solutions do
not split into two parts since the smaller root β1 disappears in the continuum limit. Particularly
we note that the region marked with the question mark in figure 3 disappears in the continuum
limit.
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The static solutions equations (29)–(34) obtained for the discrete model equation (10)
have their continuum counterparts as the travelling solutions to the NLS field, equation (1).
The general form of the solutions is

ψ(x, t) = ±A snq(z,m) cnr (z,m) dns(z,m) exp(y),

msz = β(x + x0 − vt),

y = i(vx + ωt + φ0),

(58)

where 0 � m � 1 is the modulus of the Jacobi elliptic functions, A, β, v and ω are the
parameters of the solution, x0 and φ0 are the arbitrary initial position and phase, respectively.
The integers q, r, s once again specify the particular form of the solution.

The continuum analogues of equations (29)–(34) have the following form and are
characterized by the respective relations between parameters.

The sn solution, (q, r, s) = (1, 0, 0),

2ω = −β2(m + 1) − v2, A = β

√
−m

λ
,

C = λ

m
A4,

ω2

λ
< C < 0.

(59)

The cn solution, (q, r, s) = (0, 1, 0),

2ω = β2(2m − 1) − v2, A = β

√
m

λ
,

C = λ

m
(m − 1)A4, −∞ < C < 0.

(60)

The dn solution, (q, r, s) = (0, 0, 1),

2ω = β2(2 − m) − v2, A = β

√
1

λ
,

C = (1 − m)λA4, 0 < C <
ω2

λ
.

(61)

The 1/sn solution, (q, r, s) = (−1, 0, 0),

2ω = −β2(1 + m) − v2, A = β

√
−1

λ
,

C = mλA4,
ω2

λ
< C < 0.

(62)

The 1/cn solution, (q, r, s) = (0,−1, 0),

2ω = β2(2m − 1) − v2, A = β

√
m − 1

λ
,

C = mλ

m − 1
A4, 0 < C < ∞.

(63)

The sndn/cn solution, (q, r, s) = (1,−1, 1),

2ω = −2β2(2m − 1) − v2, A = β

√
−1

λ
,

C = λA4, −∞ < C <
ω2

λ
.

(64)

The above six solutions can be rewritten in many other forms using the properties of the
Jacobi elliptic functions [23]. However, we believe that they span the entire two-parameter
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space, (C, f ) of standing wave solutions, obtained as the continuum limit of corresponding
space of the discrete models.

All solutions are conveniently parameterized by a single parameter −∞ < C < ω2/λ for
λ > 0, and −∞ < C < ∞ for λ < 0, as it is presented in figure 10.

The solutions in equations (59)–(61) are bounded while the other ones are unbounded.
The solutions in equations (60) and (61) are defined for λ > 0 while the others for λ < 0.

8. Conclusions

Our main findings for the two-parameter TI DNLS model equation (10) can be summarized
as follows:

• Subclasses of the model conserving quantities equations (14)–(16) have been found in
section 3 (see figure 1).

• All stationary solutions of the form of equation (9) can be found from the DFI
equation (6), which is a quadratic equation with the solution of equation (21). The
whole set of solutions is parameterized by the integration constant C entering the DFI and
the initial value f0. Admissible values of f0 for given C are presented in figures 2 and 3
for λ = 1 and λ = −1, respectively.

• Many of the existing stationary solutions were expressed in terms of the Jacobi elliptic
functions. The general form of the solutions is given by equation (26) and the parameters
of particular solutions are displayed in equations (29)–(34). The Jacobi elliptic function
solutions were related to that in the form of the quadratic map (see figures 2 and 3). In
the portion of figure 3 marked with the question mark the Jacobi elliptic function solution
of the form of equation (26) was not found. We speculate that the reason of failure is that
this region disappears in the continuum limit.

• Exact moving solutions to equation (10) in the form of the hyperbolic functions are given
by equations (35)–(37) and similar solutions in the form of the Jacobi elliptic functions
can also be obtained. For fixed model parameters δi there exists an isolated propagation
velocity. However, for δ1 = δ3 = 0, which corresponds to the integrable lattice, the
propagation velocity can change continuously.

• The spectrum of small-amplitude vibrations in the vicinity of the stationary solutions
was investigated. For the TI models the spectrum always contains two pairs of zero
eigenvalues, one pair corresponds to the translational invariance and another pair to the
invariance with respect to the phase shift. Phase invariant and translationally invariant
eigen-pairs are given by equations (45) and (47), respectively. Stationary solutions can
be set in slow motion with the use of the translationally invariant eigenvector as described
in section 6.2.

• Examples of stable pulses (bright solitons), kinks (dark solitons) and inverted kinks are
given in sections 6.4–6.6. Bright and dark solitons propagating at slow speed do not
radiate energy because the translational eigenmode used for boosting is a solution to the
linearized equation whose accuracy grows for decreasing eigenmode amplitude, i.e., with
decrease in propagation velocity. A key difference between TI models and their generic
DNLS discretization counterparts [21, 22] can be found in the parameter range of stability
of the dark solitons which is much narrower in the latter; dark solitons are practically
always stable in the former, provided that their background is (modulationally) stable.

• A complete set of standing wave solutions to the continuum NLS equation with
focusing/defocusing Kerr nonlinearity, equation (1), is presented by equations (59)–(64).
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These solutions fill the whole admissible region obtained as the continuum limit of the
regions found for the discrete models.

Our study opens a number of new problems and research directions. Particularly, it would
be interesting to investigate whether the Jacobi elliptic function solutions can be obtained for
DFIs of higher order. It would also be of interest to systematically examine the stability in
such discrete systems of the full elliptic function solutions, also as a function of their elliptic
modulus. Furthermore, from a mathematical perspective, it would be worthwhile to examine
the well posedness of these models, especially in the case of the non-norm preserving settings
(when N is conserved, it can be straightforwardly used to infer global existence of the solution
in time). Finally, generalizing such approaches to higher dimensions and attempting to obtain
analytical solutions in the latter context would constitute another very timely direction for
future work.
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